Call 1800-123-2003
working of van de graff generator |
| A Van de Graaff generator is an electrostatic generator which uses a moving belt to accumulate very high amounts of electrical charge on a hollow metal globe on the top of the stand. Schematic view of a classical Van de Graaff-generator. 1) hollow metal sphere 2) upper electrode 3) upper roller (for example an acrylic glass) 4) side of the belt with positive charges 5) opposite side of the belt with negative charges 6) lower roller (metal) 7) lower electrode (ground) 8) spherical device with negative charges, used to discharge the main sphere 9) spark produced by the difference of potentials As the belt passes in front of the lower comb, it receives negative charge that escapes from its points due to the influence of the electric field around the lower pulley, which ionizes the air at the points. As the belt touches the upper roller (6), it transfers some electrons, leaving the roller with a negative charge (if it is insulated from the terminal), which added to the negative charge in the belt generates enough electric field to ionize the air at the points of the upper comb. Electrons then leak from the belt to the upper comb and to the terminal, leaving the belt positively charged as it returns down and the terminal negatively charged. The sphere shields the upper roller and comb from the electric field generated by charges that accumulate at the outer surface of it, causing the discharge and change of polarity of the belt at the upper roller to occur practically as if the terminal were grounded. As the belt continues to move, a constant charging current travels via the belt, and the sphere continues to accumulate negative charge until the rate that charge is being lost (through leakage and corona discharges) equals the charging current. The larger the sphere and the farther it is from ground, the higher will be its final potential. |