Ask a Teacher
explain the process of respiration? |
Respiration is the transport of oxygen from the clean air to the tissue cells and the transport of carbon dioxide in the opposite direction. This is only part of the processes of delivering oxygen to where it is needed in the human body and removing carbon dioxide waste. Not all of the oxygen breathed in is replaced by carbon dioxide; around 15% to 18% of what we breathe out is still oxygen. The exact amount of exhaled oxygen and carbon dioxide varies according to the fitness, energy expenditure and diet of that particular person. Air-breathing of humans, respiration of oxygen includes four stages:
Nasal breathing of respiration process refers to the state of inhaling and exhaling through the nose. It is considered superior to mouth breathing for several reasons. Breathing through the nose has numerous health benefits due to the fact that the air travels to and from the external environment and the lungs through the sinuses as opposed to the mouth. The sinuses do a better job of filtering the air as it enters the lungs. In addition, the smaller diameter of the sinuses creates pressure in the lungs during exhalation, allowing the lungs to have more time to extract oxygen from them. When there is proper oxygen-carbon dioxide exchange, the blood will maintain a balanced pH. If carbon dioxide is lost too quickly, as in mouth breathing, oxygen absorption is decreased. Nasal breathing is especially important in certain situations such as dehydration, cold weather, laryngitis, and when the throat is sore or dry because it does not dry the throat as much. Nasal breathing in public is considered to be more socially acceptable and attractive than mouth breathing. The
major function of the respiratory process is gas exchange. As gas
exchange occurs, the acid-base balance of the body is maintained as part
of homeostasis. If proper ventilation is not maintained two opposing
conditions could occur: 1) respiratory acidosis, a life threatening
condition, and 2) respiratory alkalosis.
Human body have two lungs, with the left being divided into two lobes and the right into three lobes. Together, the lungs contain approximately 1500 miles (2,400 km) of airways and 300 to 500 million alveoli, having a total surface area of about 75 m2 in adults — roughly the same area as a tennis court. Furthermore, if all of the capillaries that surround the alveoli were unwound and laid end to end, they would extend for about 620 miles. The lung capacity depends on the person's age, height, weight, sex, and normally ranges between 4,000 and 6,000 cm3 (4 to 6 L). For example, females tend to have a 20–25% lower capacity than males. Tall people tend to have a larger total lung capacity than shorter people. Smokers have a lower capacity than non-smokers. Lung capacity is also affected by altitude. People who are born and live at sea level
will have a smaller lung capacity than people who spend their lives at a
high altitude. This is because the atmosphere is less dense at higher
altitude, and therefore, the same volume of air contains fewer molecules
of all gases, including oxygen. In response to higher altitude, the
body's diffusing respiration capacity increases in order to be able to
process more air.
Human lungs are to a certain extent 'overbuilt' and have a tremendous reserve volume as compared to the oxygen exchange requirements when at rest. This is the reason that individuals can smoke for years without having a noticeable decrease in lung function while still or moving slowly; in situations like these only a small portion of the lungs are actually perfused with blood for gas exchange. As oxygen requirements
increase due to exercise, a greater volume of the lungs is perfused,
allowing the body to reach its CO2/O2 exchange respiration requirements.
Under normal conditions, humans cannot store much oxygen in the body. Apnea of more than approximately one minute's duration therefore leads to severe lack of oxygen in the blood circulation. Permanent brain damage can occur after as little as three minutes and death will inevitably ensue after a few more minutes unless ventilation is restored. However, under special circumstances such as hypothermia, hyperbaric oxygenation, apneic oxygenation (see below), or extracorporeal membrane oxygenation, much longer periods of apnea may be tolerated without severe consequences. Untrained humans cannot sustain voluntary apnea for more than one or two minutes. The reason for this is that the rate of breathing and the volume of each breath are tightly regulated to maintain constant values of CO2 tension and pH of the blood. In apnea, CO2 is not removed through the lungs and accumulates in the blood. The consequent rise in CO2 tension and drop in pH result in stimulation of the respiratory centre in the brain which eventually cannot be overcome voluntarily. When a person is immersed in water, physiological changes due to the mammalian diving reflex enable somewhat longer tolerance of apnea even in untrained persons. Tolerance can in addition be trained. The ancient technique of free-diving requires breath-holding and world-class free-divers can indeed hold their breath underwater up to depths of 214 metres and for more than nine minutes. Apneists, in this context, are people who can hold their breath for a long time. |