Ask a Teacher
Use Euclid's division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8. |
Let a be any positive integer and b = 3 a = 3q + r, where q ? 0 and 0 ? r < 3 So a = 3q or 3q + 1 or 3q + 2 Therefore, every number can be represented as these three forms. There are three cases. Case 1: When a = 3q, a3 = (3q)3 = 27q3 = 9(3q3) = 9 Where m is an integer such that m = 3q3 Case 2: When a = 3q + 1, a3 = (3q +1)3 a3 = 27q3 + 27q2 + 9q + 1 a3 = 9(3q3 + 3q2 + q) + 1 a3 = 9m + 1 Where m is an integer such that m = (3q3 + 3q2 + q) Case 3: When a = 3q + 2, a3 = (3q +2)3 a3 = 27q3 + 54q2 + 36q + 8 a3 = 9(3q3 + 6q2 + 4q) + 8 a3 = 9m + 8 Where m is an integer such that m = (3q3 + 6q2 + 4q) Therefore, the cube of any positive integer is of the form 9m, 9m + 1, or 9m + 8. |