Call 1800-123-2003
HOW DECREASING THE BINDING AFFINITY OF HAEMOGLOBIN REDUCE ALTITUDE SICKNESS? |
| Increased altitude is coupled with decrease atmospheric pressure meaning that for every breath inhaled; there is less O2 available. Think of breathing inside a bedroom filled with 1000 liters of O2. There is plenty of air around you and the pressure is high, like it is at sea level. Now imagine you are breathing in a warehouse that is filled with an equal amount of air. The decreased in pressure would make it harder to breathe. The atmospheric pressure on top of Mt. Everest (29,028 ft) is 33% less than it is at sea level. This means that 66% less oxygen is available. This is what climbers face when performing at high altitudes. Due to the oxygen constraint, our bodies are forced to work harder to continue to metabolize. Respiration must increase to get sufficient oxygen across the lungs. Increasing our respiration can be taxing to our systems. If the body overdoes it, Acute Mountain Sickness (AMS) can occur. This is the result of increased respiration and circulation. The body overcompensates for the decreased oxygen by sending too much to the brain. Leakage into the brain occurs and causes swelling. Decreased oxygen also starves nerve cells, triggering the release of adenosine. This chemical decreases the body’s metabolism, decreasing our need for oxygen. |