Ask a Teacher



Mitochondria

Mitochondria are unusual organelles. They act as the power plants of the cell, and are surrounded by two membranes, and have their own genome. They also divide independently of the cell in which they reside, meaning mitochondrial replication is not coupled to cell division.
Mitochondria contain two major membranes. The outer mitochondrial membrane fully surrounds the inner membrane, with a small intermembrane space in between. The outer membrane has many protein-based pores that are big enough to allow the passage of ions and molecules as large as a small protein. In contrast, the inner membrane has much more restricted permeability, much like the plasma membrane of a cell. The inner membrane is also loaded with proteins involved in electron transport and ATP synthesis. This membrane surrounds the mitochondrial matrix, where the citric acid cycle produces the electrons that travel from one protein complex to the next in the inner membrane. At the end of this electron transport chain, the final electron acceptor is oxygen, and this ultimately forms water (H20). At the same time, the electron transport chain produces ATP. (This is why the the process is called oxidative phosphorylation.)

During electron transport, the participating protein complexes push protons from the matrix out to the intermembrane space. This creates a concentration gradient of protons that another protein complex, called ATP synthase, uses to power synthesis of the energy carrier molecule ATP.
Mitochondrial genomes are very small and show a great deal of variation as a result of divergent evolution. Mitochondrial genes that have been conserved across evolution include rRNA genes, tRNA genes, and a small number of genes that encode proteins involved in electron transport and ATP synthesis. The mitochondrial genome retains similarity to its prokaryotic ancestor, as does some of the machinery mitochondria use to synthesize proteins. In fact, mitochondrial rRNAs more closely resemble bacterial rRNAs than the eukaryotic rRNAs found in cell cytoplasm. In addition, some of the codons that mitochondria use to specify amino acids differ from the standard eukaryotic codons.

Still, the vast majority of mitochondrial proteins are synthesized from nuclear genes and transported into the mitochondria. These include the enzymes required for the citric acid cycle, the proteins involved in DNA replication and transcription, and ribosomal proteins. The protein complexes of the respiratory chain are a mixture of proteins encoded by mitochondrial genes and proteins encoded by nuclear genes. Proteins in both the outer and inner mitochondrial membranes help transport newly synthesized, unfolded proteins from the cytoplasm into the matrix, where folding ensues.
Mitochondria cannot be made "from scratch" because they need both mitochondrial and nuclear gene products. These organelles replicate by dividing in two, using a process similar to the simple, asexual form of cell division employed by bacteria. Video microscopy shows that mitochondria are incredibly dynamic. They are constantly dividing, fusing, and changing shape. Indeed, a single mitochondrion may contain multiple copies of its genome at any given time.
Logically, mitochondria multiply when a the energy needs of a cell increase. Therefore, power-hungry cells have more mitochondria than cells with lower energy needs. For example, repeatedly stimulating a muscle cell will spur the production of more mitochondria in that cell, to keep up with energy demand.


comments powered by Disqus