Ask a Teacher
how is albert einstein related to diffraction of light |
Planck's Introduction of the Quantum At the turn of the century, physicists did not yet clearly recognize that these and other difficulties in physics were in any way related. The first development that led to the solution of these difficulties was Planck's introduction of the concept of the quantum, as a result of physicists' studies of blackbody radiation during the closing years of the 19th century. (The term blackbody refers to an ideal body or surface that absorbs all radiant energy without any reflection.) A body at a moderately high temperature-a "red heat"-gives off most of its radiation in the low frequency (red and infrared) regions; a body at a higher temperature-"white heat"-gives off comparatively more radiation in higher frequencies (yellow, green, or blue). During the 1890s physicists conducted detailed quantitative studies of these phenomena and expressed their results in a series of curves or graphs. The classical, or prequantum, theory predicted an altogether different set of curves from those actually observed. What Planck did was to devise a mathematical formula that described the curves exactly; he then deduced a physical hypothesis that could explain the formula. His hypothesis was that energy is radiated only in quanta of energy hn, where n is the frequency and h is the quantum action, now known as Planck's constant. Einstein's Contribution The next important developments in quantum mechanics were the work of Albert Einstein. He used Planck's concept of the quantum to explain certain properties of the photoelectric effect -an experimentally observed phenomenon in which electrons are emitted from metal surfaces when radiation falls on these surfaces. According to classical theory, the energy, as measured by the voltage of the emitted electrons, should be proportional to the intensity of the radiation. Actually, however, the energy of the electrons was found to be independent of the intensity of radiation-which determined only the number of electrons emitted-and to depend solely on the frequency of the radiation. The higher the frequency of the incident radiation, the greater is the electron energy; below a certain critical frequency no electrons are emitted. These facts were explained by Einstein by assuming that a single quantum of radiant energy ejects a single electron from the metal. The energy of the quantum is proportional to the frequency, and so the energy of the electron depends on the frequency. Light Is Also a Particle! (Einstein) The theory of light being a particle completely vanished until the end of the 19th century when Albert Einstein revived it. Now that the dual nature of light as "both a particle and a wave" has been proved, its essential theory was further evolved from electromagnetics into quantum mechanics. Einstein believed light is a particle (photon) and the flow of photons is a wave. The main point of Einstein's light quantum theory is that light's energy is related to its oscillation frequency. He maintained that photons have energy equal to "Planck's constant times oscillation frequency," and this photon energy is the height of the oscillation frequency while the intensity of light is the quantity of photons. The various properties of light, which is a type of electromagnetic wave, are due to the behavior of extremely small particles called photons that are invisible to the naked eye. What Is the Photoelectric Effect? The German physicist Albert Einstein (1879 to 1955), famous for his theories of relativity, conducted research on the photoelectric effect, in which electrons fly out of a metal surface exposed to light. The strange thing about the photoelectric effect is the energy of the electrons (photoelectrons) that fly out of the metal does not change whether the light is weak or strong. (If light were a wave, strong light should cause photoelectrons to fly out with great power.) Another puzzling matter is how photoelectrons multiply when strong light is applied. Einstein explained the photoelectric effect by saying that "light itself is a particle," and for this he received the Nobel Prize in Physics. |