
Call 1800-123-2003
What is mean value theorem |
The Mean Value Theorem is one of the most important theoretical tools in Calculus. It states that if f(x) is defined and continuous on the interval [a,b] and differentiable on (a,b), then there is at least one number c in the interval (a,b) (that is a < c < b) such that ![]() The special case, when f(a) = f(b) is known as Rolle's Theorem. In this case, we have f '(c) =0. In other words, there exists a point in the interval (a,b) which has a horizontal tangent. In fact, the Mean Value Theorem can be stated also in terms of slopes. Indeed, the number ![]() is the slope of the line passing through (a,f(a)) and (b,f(b)). So the conclusion of the Mean Value Theorem states that there exists a point $c\in(a,b)$ such that the tangent line is parallel to the line passing through (a,f(a)) and (b,f(b)). |