Ask a Teacher



There are different types of genes for different characters like tallness;skincolour;hair type etc. .how they differ functionally since genes present in DNA are similar in their structure and composition ??????

Genes are the blueprint of our bodies, a blueprint that creates the variety of proteins essential to any organisms survival. These proteins which are used in countless ways by our bodies are produced by genetic sequences, i.e. our genes, as described in the cell biology section, protein synthesis.

Utilization of Genetic Information

All cells have originated from the single zygote cell that formed it, and therefore possess all the genetic information that was held in that zygote. This means that an organism could be cloned from the genetic information in the nucleus of one cell, regardless of the volume of cells that make the organism (be it one or billions).

However, this brings about the following question, how can cells become differentiated and specialised to perform a particular function if they are all the same? The answer to this is each cell performing its unique role has some of its genes 'switched on' and some 'switched off'.

In light of this, the cells in our body still contain the same genetic information, though only a partial amount of this information is being used in any one cell.

Switched On and Switched Off

Some genes are permanently switched on, because they contain the blueprint for vital metabolites (enzymes required for respiration etc). However, since cells become specialised in multi-cellular organisms such as ourselves, some genes become switched off because they are no longer required to be functional in that particular cell or tissue.

For instance, insulin is produced in pancreas cells, which must have the gene that codes for insulin switched on, and perhaps other genes that are un-related to the role of the pancreas can be switched off.

Some other genes that will be functional during specialisation determine the physical characteristics of the cell, i.e. long and smooth for a muscle cell or indented like a goblet cell

Skin Colour                                                

Skin colour is an excellent example of genetic control at work. Skin colour depends on the degree of melanin found in skin cells. The amount of melanin is pre-determined by the genetic blueprint of some genes in each cell. To be exact, there are two genes that control the production of melanin, each of which has a dominant and recessive expression.

 



comments powered by Disqus