Ask a Teacher
find the real number 'x' and 'y' if (x-iy)(3+5i) is the conjugate of -6-24i |
Consider, (x - iy) (3 + 5i) By opening the bracket, we get (x - iy) (3 + 5i) = x(3 + 5i) - iy (3 + 5i) = 3x +5xi - [3yi + 5y] = 3x + 5xi - 3yi + 5y = (3x + 5y) + (5x - 3y)i Now, conjugate of -6 - 24i is -6 + 24i. (x - iy) (3 + 5i) = -6 + 24i [given] therefore, (3x + 5y) + (5x - 3y)i = -6 + 24i. On equating the equation we get, 3x + 5y = -6 and 5x - 3y = 24 On solving the above two eqyations we get the value of x and y 3x + 5y = -6 ............(1) and 5x - 3y = 24 .............(2) therefore, y = -3 Substituting the value of y = -3 in (1) We get, 3x + 5x - 3 = -6 3x - 15 = -6 3x = -6 + 15 x = 9/3 = 3 x = 3 therefore, the values are x = 3 and y = -3. |