In terms of Bohr radius a0, the radius of the second Bohr orbit of hydrogen atom is given by
4 a0
8 a0
√2 a0
2 a0
The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to wavelength of emitted radiation corresponds to the transition between
n = 3 to n = 2 states
n = 3 to n = 1 states
n = 2 to n = 1 states
n = 4 to n = 3 states
If the electron in a hydrogen atom jumps from an orbit with level n2 = 3 to an orbit with level n1 = 2, the emitted radiation has a wavelength given by
λ = 6/R
λ = R/6
In a Rutherford scattering experiment when a projectile of charge Z1and mass M1 approaches a target nucleus of charge Z2 and Mass M2, the distance of closest approach is r0. The energy of the projectile is
directly proportional to M1 × M2
directly proportional to Z1 Z2
inversely proportional to Z1
directly proportional to Mass M1
Hydrogen atom emits blue light when it changes from n = 4 energy level to n = 2 level. Which colour of light would the atom emit when it changes from n = 5 level to n = 2 level?
red
yellow
violet
green
If 13.6 eV energy is required to ionize the hydrogen atom, then the energy required to remove an electron from n = 2 is
102 eV
Zero
3.4 eV
6.8 eV
Which of the following transitions in a hydrogen atom emits of the highest frequency?
n = 1 to n = 2
n = 2 to n = 6
n = 2 to n = 1
n = 6 to n = 2
The ionization energy of hydrogen atom is 13.6 eV. Following Bohr’s theory, the energy corresponding to a transition between 3rd and 4th orbit is
3.40 eV
1.51 eV
0.85 eV
0.66 eV