If 13.6 eV energy is required to ionize the hydrogen atom, then the energy required to remove an electron from n = 2 is
102 eV
Zero
3.4 eV
6.8 eV
The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to wavelength of emitted radiation corresponds to the transition between
n = 3 to n = 2 states
n = 3 to n = 1 states
n = 2 to n = 1 states
n = 4 to n = 3 states
In a Rutherford scattering experiment when a projectile of charge Z1and mass M1 approaches a target nucleus of charge Z2 and Mass M2, the distance of closest approach is r0. The energy of the projectile is
directly proportional to M1 × M2
directly proportional to Z1 Z2
inversely proportional to Z1
directly proportional to Mass M1
Hydrogen atom emits blue light when it changes from n = 4 energy level to n = 2 level. Which colour of light would the atom emit when it changes from n = 5 level to n = 2 level?
red
yellow
violet
green
When a hydrogen atom is raised from the ground state to an excited state
potential energy decreases and kinetic energy increases
potential energy increases and kinetic energy decreases
Both kinetic energy and potential energy decrease
Absorption spectrum
The energy required to excite hydrogen atom from n = 1 to n = 2 state is 10.2 eV. What is the wavelength emitted when it returns to ground state?
1020 × 10-10 m
1220 × 10-10 m
1320 × 10-10 m
920 × 10-10 m
The ground state energy H-atom is 13.6 eV. The energy needed to ionize H –atom from its second excited state is
1.51 eV
13.6 eV
12.1 eV
If the electron in a hydrogen atom jumps from an orbit with level n2 = 3 to an orbit with level n1 = 2, the emitted radiation has a wavelength given by
λ = 6/R
λ = R/6
When hydrogen atom is in its first excited level, its radius is
four times, its ground sate radius
twice, its ground state radius
same as its ground state radius
half of its ground state radius