Hydrogen atom emits blue light when it changes from n = 4 energy level to n = 2 level. Which colour of light would the atom emit when it changes from n = 5 level to n = 2 level?
red
yellow
violet
green
The Bohr model of atoms
assumes that the angular momentum of electrons is quantized
uses Einstein’s photoelectric equation
predict continuous emission spectra for atoms
predicts the same emission spectra for all types of atoms
When hydrogen atom is in its first excited level, its radius is
four times, its ground sate radius
twice, its ground state radius
same as its ground state radius
half of its ground state radius
An α-particle of energy 5 MeV is scattered through 180o by a fixed uranium nucleus. The distance of the closest approach is of the order of
1 Å
10-10 cm
10-12 cm
10-15 cm
The energy required to excite hydrogen atom from n = 1 to n = 2 state is 10.2 eV. What is the wavelength emitted when it returns to ground state?
1020 × 10-10 m
1220 × 10-10 m
1320 × 10-10 m
920 × 10-10 m
If 13.6 eV energy is required to ionize the hydrogen atom, then the energy required to remove an electron from n = 2 is
102 eV
Zero
3.4 eV
6.8 eV
If the electron in a hydrogen atom jumps from an orbit with level n2 = 3 to an orbit with level n1 = 2, the emitted radiation has a wavelength given by
λ = 6/R
λ = R/6
The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to wavelength of emitted radiation corresponds to the transition between
n = 3 to n = 2 states
n = 3 to n = 1 states
n = 2 to n = 1 states
n = 4 to n = 3 states