A bridge can bear 4 x 104 kg weight. If the breaking stress is 47 x 103 N/m3 and factor of safety is 5 then the area of cross section of the rod will be :
4.34 m2
43.4 m2
0.434 m2
0.04 m2
A force of 200 N is applied at one end of a wire of length 2 m and having area of cross-section 10-2 cm2. The other end of the wire is rigidly fixed. It coefficient of linear expansion of the wire α = 8 x 10-6/oC and Young's modulus Y = 2.2 x 1011 N/m2 and its temperature is increased by 5oC, then the increase in the tension of the wire will be :
2.4 N
8.8 N
4.2 N
4.4 N
Two rods of different materials having coefficients of linear expansion α1 and α2 , Young's modulii Y1 and Y2 respectively are fixed between two rigid massive walls. The rods are heated such that they undergo the same increase in temperature. There is no bending of rods. If α1 : α2 =2 : 3, the thermal stresses developed in the two rods are equal provided Y1 : Y2 is equal to :
2 : 3
1 : 1
3 : 2
4 : 9
The length of an iron wire is L and area of cross-section is A. The increase in length is l on applying the force F on its two ends. Which of the statement is correct ?
Increase in length is inversely proportional to A
Increase in length is proportional to Young's modulus
Increase in length is inversely proportional to its length L
Increase in length is proportional to area of cross-section A
The magnitude of the force developed by raising the temperature from 0oC to 100oC of the iron bar 1.00 m long and 1 cm2 cross-section when it is held so that it is not permitted to expand or bend is :
(Given : α = 10-5 /oC and Y = 1011 N/m2)
103 N
104 N
105 N
109 N
The Poisson's ratio for a material is 0.1. If the longitudinal strain of a rod of this material is 1 x 10-3, then the percentage change in the volume of rod will be :
8%
0.8%
0.08%
0.008%
The bulk modulus of rubber is 9 x 108 N/m2. To what depth below the surface of sea should the rubber ball taken as to decrease its volume by 0.1%?
1m
10 m
100 m
1km
Young's modulus of the material of a wire of length L and radius r is Y N/m2. If the length is reduced to L/2 and radius to r/2, the Young's modulus will be :
Y/4
Y/2
Y
2Y
A wire of density 9 gm/cm3 is stretched and clamped between two clamps distant 100 cm apart by a force which produces an elongation of 0.05 cm in it. If Y = 9 x 1011 dyne/cm2 then the minimum frequency of transverse vibrations will be :
15.15 per sec
25.25 per sec
35.35 per sec
53.53 per sec
One end of a uniform wire of length L and weight W is attached rigidly to a point in roof and a weight W1 is suspended from its lower end. If S is the area of corss-section of the wire, the stress in the wire at a height of 3L/4 from its lower end is :