A uniform elastic plank moves due to a constant force F placed over a smooth surface. The area of end face is S and Young's modulus of the material is E. What is the average strain produced in the direction of the force?
F/4SE
Zero
F/SE
F/2SE
The length of an iron wire is L and area of cross-section is A. The increase in length is l on applying the force F on its two ends. Which of the statement is correct ?
Increase in length is inversely proportional to A
Increase in length is proportional to Young's modulus
Increase in length is inversely proportional to its length L
Increase in length is proportional to area of cross-section A
A wire of density 9 gm/cm3 is stretched and clamped between two clamps distant 100 cm apart by a force which produces an elongation of 0.05 cm in it. If Y = 9 x 1011 dyne/cm2 then the minimum frequency of transverse vibrations will be :
15.15 per sec
25.25 per sec
35.35 per sec
53.53 per sec
A 5 m long steel wire is suspended from the ceiling of a room. A sphere of mass 25 kg and 10 cm radius is attached to another end of the wire. The height of the ceiling is 5.21 m. When the sphere is made to oscillate as a pendulum, then its lowest point just touches the floor. The velocity of the sphere at the lowest point will be :
(Given : Y = 2 x 1011N/m2, radius of wire = 0.05 cm)
3.71 m/s
3.71 cm/s
37.1 cm/s
37.1 m/s
For the same cross-sectional area and for a given load, teh ratio of depressions for the beam of a square cross-section and circular cross-section is :
3 : π
π : 3
1 : 1
1 : π
A thick rope of density 'ρ' and length 'L' is hung from a rigid support. The Young's modulus of the material of rope is 'Y'. The increase in length of the rope due to its own weight is :
1/4 ρgL2/Y
1/2 ρgL2/Y
ρ gL2/Y
ρ gL/Y
Young's modulus of the material of a wire of length L and radius r is Y N/m2. If the length is reduced to L/2 and radius to r/2, the Young's modulus will be :
Y/4
Y/2
Y
2Y
In the given figure, if the dimensions of the wires are the same and materials are different, Young's modulus is more for :
Both (a) and (b)
None of these
A force of 200 N is applied at one end of a wire of length 2 m and having area of cross-section 10-2 cm2. The other end of the wire is rigidly fixed. It coefficient of linear expansion of the wire α = 8 x 10-6/oC and Young's modulus Y = 2.2 x 1011 N/m2 and its temperature is increased by 5oC, then the increase in the tension of the wire will be :
2.4 N
8.8 N
4.2 N
4.4 N
The Poisson's ratio for a material is 0.1. If the longitudinal strain of a rod of this material is 1 x 10-3, then the percentage change in the volume of rod will be :
8%
0.8%
0.08%
0.008%