Sin-1 (1/x) =
sin x
cosec-1x
cos x
cos (1/x)
If sin-1 (1/2) = tan-1 x, find the value of x
√3
1/2
Area of Δ ABC is
1/2 ab cos C
1/2 ab sin c
1/2 ab cos B
1/2 ca sin B
tan (735o) = tan (2 × 360o + 15o)
Sin 35o
Cos 15o
tan 15o
cot 15o
The product s(s-a) (s-b) (s-c) is equal to
Δ
Δ2
2 Δ
Δ/s
Cos (tan-1 3/4) =
4/5
2/5
1/4
3/4
The principal value of sin-1 (1/2)
π
π/2
π/6
0
Cos4 A - Sin4 A =
2 Sin2 A - 1
1 - 2 Sin2 A
2 Cos2 A - 1
1 -2 Cos2 A
The value of is
2
3
1
Solution of tan-12x + tan-1 3 x = π/4
-1 or 1/6
1 or -1/6
-1 or 6
1 or -6