A planet in a distant solar system is 10 times more massive than the earth and its radius is 10 times smaller. Given that the escape velocity from the earth is 11kms-1, the escape velocity from the surface of the planet would be :
110 kms-1
0.11 kms-1
1.1 kms-1
11 kms-1
The radius of earth is 6400 km and the value of g is 10m/s2 . If the weight of 5km body on the equator becomes zero, then the angular speed of earth will be :
An infinity number of point masses each equal to m are placed at x = 1, x = 2, x = 4, x = 8, ..... What is the total gravitational potential at x - 0?
-Gm
-2Gm
-4Gm
-8 Gm
The kinetic energy needed to project a body of mass m from the earth's surface (radius R) to infinity is :
mgR
2mgR
Energy required to move a body of mass m from an orbit of radius 2R to 3R is :
A satellite is revolving round the earth. Its K.E is Ek. How much would it be made so that the satellite may escape out of the gravitational field of earth?
2Ek
3Ek
Ek/2
Infinite
Two spherical bodies of mass M and 5M and radii R and 2R respectively are released in free space with initial separation between their centres equal to 12R. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is :
7.5 R
1.5 R
2.5 R
4.5 R
The escape velocity of a body depends upon mass as :
m2
m3
m0
m1
ge and gp are accelerations due to gravity on the surface of earth and a planet respectively. The radius and mass of the planet are double the radius and mass of earth. Then :
ge = gp
ge = 2gp
gp = 2ge
ge = √2gp
If the radius of the earth decreases by 10%, the mass remaining unchanged, what will happen to the acceleration due to gravity?
Decreases by 19%
Increases by 19%
Decreases by more than 19%
Increases by more than 19%