The equations of the transverse and conjugate axes of a hyperbola respectively are x + 2 y - 3 = 0, 2 x - y + 4 = 0 and their respective length are √2 and 2/√3. The equation of the hyperbola is.
2/5 ( x + 2 y - 3)2 - 3/5 (2 x - y + 4)2 = 1
2/5 (2 x - y + 4)2 - 3/5 (x + 2 y - 3)2 = 1
2 (2 x - y + 4 )2 - 3 (x + 2 y - 3)2 = 1
2 (x + 2 y - 3)2 - 3 (2 x - y + 4)2 = 1
If the normal at (ct, c/t) on the curve xy = c2 meets the curve again in t' , then
t' = -1/t3
t' = -1/t
t' = 1/t2
t'2 = -1/t2
The equation of the chord of the hyperbola x2 - y2 = 9 which is bisected at (5, -3) is
5 x + 3 y = 9
5 x - 3 y = 16
5 x + 3 y = 16
5 x - 3 y = 9
The eccentricity of the conic 9 x2 - 16 y = 144 is
4/5
5/4
4/3
√7
A rectangular hyperbola is one in which
the two axes are rectangular
the two axes are equal
the asymptotes are perpendicular
the two branches are perpendicular
If the chords of contact of tangents from two points (x1,y1) and (x2,y2) to the hyperbola are at right angles, then is equal to
-a2/b2
-b2/a2
-b4/a4
-a4/b4
The line y = 4x + c touches the hyperbola x2 - y2 = 1 iff
c = 0
c = ± √2
c = ± √15
c = ± √17
The equation represents
an ellipse
a parabola
a hyperbola
a circle
If e, e' are the eccentricities of hyperbolas and , then
e = e'
e = -e'
ee' = 1
1/e2 + 1/e'2 = 1
If e and e1 are the eccentricities of the hyperbolas xy = c2 and x2 - y2 = c2 , then e2 + e21 is equal to
1
4
6
8