A rectangular hyperbola is one in which
the two axes are rectangular
the two axes are equal
the asymptotes are perpendicular
the two branches are perpendicular
If e and e1 are the eccentricities of the hyperbolas xy = c2 and x2 - y2 = c2 , then e2 + e21 is equal to
1
4
6
8
The equation represents
an ellipse
a parabola
a hyperbola
a circle
For a hyperbola, the foci are at (±4, 0) and vertices at (±2, 0).Its equation is
P is a point on the hyperbola , N is the foot of the⊥ from P on the transverse axis.The tangent to the hyperbola at P meets the transverse axis at T.If O is the centre of the hyperbola, then OT.ON is equal to
e2
a2
b2
b2/a2
The locus of the points of intersection of perpendicular tangents to is
x2 + y2 = a2 + b2
x2 - y2 = a2 - b2
x2 + y2 = a2 - b2
x2 - y2 = a2 + b2
The equations of the transverse and conjugate axes of a hyperbola respectively are x + 2y - 3 = 0, 2x - y + 4 = 0 and their respective length are √2 and 2/√3. The equation of the hyperbola is.
2/5 ( x + 2y - 3)2 - 3/5 (2x - y + 4)2 = 1
2/5 (2x - y + 4)2 - 3/5 (x + 2y - 3)2 = 1
2 (2x - y + 4 )2 - 3 (x + 2y - 3)2 = 1
2 (x + 2y - 3)2 - 3 (2x - y + 4)2 = 1
If e,e' be the eccentricities of two conics S and S' and if e2 + e'2 = 3, then both S and S' can be
Ellipses
Parabola
Hyperbolas
None of these
If the normal at (ct, c/t) on the curve xy = c2 meets the curve again in t' , then
t' = -1/t3
t' = -1/t
t' = 1/t2
t'2 = -1/t2
The length of the latus rectum of the hyperbola is
2a2/b
2b2/a
b2/a
a2/b