As sinx < x and x < tanx in ( 0,π/2 ), so in the same interval
Sinx < tanx
Sinx > tanx
sin2 x > tan 2 x
|sinx | > |tanx |
( x2 + 1 ) (x - 1 ) ( x -2 ) < 0 , then
x < 1 or x > 2
x ∈ ( 1, 2 )
-1 < x
None of these
( x - 1 ) > 0
( x -2 ) > 0
(x - 2 ) < 0
( x - 1 ) > 0 if ( x -2 ) > 0
If a/b < c/d, then
( a/b)2 < (c/d)2
If 3 < 3 t - 18 ≤ 18, then which one of the following is true?
15 ≤ 2 t+1 ≤ 20
8 ≤ 2 t ≤ 12
8 ≤ t+1 ≤ 13
21≤ 3 t ≤ 24
If 1/a < 1/b; then
| a | > | b |
a < b
a > b
If |x| > 5, then
0 < x < 5
x < -5 or x > 5
-5 < x < 5
x > 5
If | x | < x , then:
x is a positive real number
x is a non negative real number
There is no x satisfying this inequality
x is a negative real number
x2 -3 |x| + 2 < 0, then x belongs to
( 1,2 )
( -2, -1 )
( -2, -1 ) U ( 1, 2 )
( -3, 5 )
If x satisfies the inequations 2x - 7 < 11, 3x + 4 < -5, then x lies in the interval
(-∞, -3)
(-∞, 3)
(-∞, 2)
(-∞, ∞)