As sinx < x and x < tanx in ( 0,π/2 ), so in the same interval
Sinx < tanx
Sinx > tanx
sin2 x > tan 2 x
|sinx | > |tanx |
If x2 > 4, then
x > 4
| x | > 2
-4 < x < 4
None of these
x2 -3 |x| + 2 < 0, then x belongs to
( 1,2 )
( -2, -1 )
( -2, -1 ) U ( 1, 2 )
( -3, 5 )
If 1/a < 1/b; then
| a | > | b |
a < b
a > b
Log 2 x > 4, then x belongs to
x > 16
x > 8
If x satisfies the inequations 2x - 7 < 11, 3x + 4 < -5, then x lies in the interval
(-∞, -3)
(-∞, 3)
(-∞, 2)
(-∞, ∞)
|2x -3| < | x + 5 |, then x belongs to :
( 5, 9 )
( -2/3, 8 )
( -8, 2/3 )
|3x + 7 | < 5, then x belongs to
( -4, -3 )
( -4, -2/3 )
(-5, 5)
( -5/3, 5/3 )
If 3 < | x | < 6, then x belongs to
( - 6, -3 ) U ( 3, 6 )
( - 6, 6 )
( -3, -3 ) U (3, 6 )
If |x| > 5, then
0 < x < 5
x < -5 or x > 5
-5 < x < 5
x > 5