( x - 1 ) > 0
( x -2 ) > 0
(x - 2 ) < 0
( x - 1 ) > 0 if ( x -2 ) > 0
If |x| > 5, then
0 < x < 5
x < -5 or x > 5
-5 < x < 5
x > 5
(x2 + 1 ) ( x -2 ) 2 ( x -3 ) < 0, then x belongs to
( -∞, 2) U (2, 3 )
( -∞, 3)
(2, 3 )
None of these
If 1/a < 1/b; then
| a | > | b |
a < b
a > b
If x satisfies the inequations 2x - 7 < 11, 3x + 4 < -5, then x lies in the interval
(-∞, -3)
(-∞, 3)
(-∞, 2)
(-∞, ∞)
|2x -3| < | x + 5 |, then x belongs to :
( -3, 5 )
( 5, 9 )
( -2/3, 8 )
( -8, 2/3 )
If | x | < x , then:
x is a positive real number
x is a non negative real number
There is no x satisfying this inequality
x is a negative real number
If a/b < c/d, then
( a/b)2 < (c/d)2
If x2 > 4, then
x > 4
| x | > 2
-4 < x < 4
If 3 < | x | < 6, then x belongs to
( - 6, -3 ) U ( 3, 6 )
( - 6, 6 )
( -3, -3 ) U (3, 6 )