The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
27
18
81
512
The matrix is non-singular if.
λ ≠ -5
λ ≠ -17
λ ≠ -16
λ ≠ -18
A2 + B2
A2 + B2 + 2AB
A2 + B2 + AB - BA
A2 + B2 + AB + BA
A square matrix A is singular if
| A | ≠ 0
| A | = 0
| A | = 1
| A | ≠1
None of these
adj (AB) - (adj B) (adj A) =
adj A - adj B
I
0
adj A + adj B
If A is ( aij ) m × n and B = ( bjk ) m × p, then order of AB is
m × n
m × p
p × m