When x = 6; calculate log (x + 6) + log (x - 5)
log (2)
log (4)
log (8)
log (12)
log 5 + log 4
log 0
log 1
log 20
log 10
Solve log 4x = 2
50
100
42
25
Solve log 3x = 3
501.33
333.33
1000
101.001
log 10 = _________
1
0
Solve log (x - 1) + log (x + 1) = log 2
√1
√2
√3
√4
Solve log (x + 3)+ log (x -3) = log 5
√14
√7
√6
√5
log 5x = 1; then x = _______
2
3
Solve log 2x = 3
500
400
Solve log (x + 3) + log (x - 3) = log 6
√15