Sum of the focal distance of an ellipse is equal to
2 b
2 a
2 ab
a + b
For the ellipse , the foci are
(± 1, 0)
(0, ± 1)
(± 1/√2, 0)
(± 1/2 , 0)
The diameter of 16x2 - 9y2 = 144 which is conjugate to x = 2y is
y = 16/9 x
y = 32/9 x
x = 16/9 y
x = 32/9 y
The line y = 4x + c touches the hyperbola x2 - y2 = 1 iff
c = 0
c = ± √2
c = ± √15
c = ± √17
The equation of a directrix of the ellipse is
y = 25/3
x = 3
x = -3
x = 3/25
The locus of the points of intersection of perpendicular tangents to is
x2 + y2 = a2 + b2
x2 - y2 = a2 - b2
x2 + y2 = a2 - b2
x2 - y2 = a2 + b2
If e,e' be the eccentricities of two conics S and S' and if e2 + e'2 = 3, then both S and S' can be
Ellipses
Parabola
Hyperbolas
None of these
The equation x = a cos θ, y = b sin θ, 0 ≤ θ < 2 π, a ≠ b, represent
an ellipse
a parabola
a circle
a hyperbola
The latus rectum of the ellipse 5x2 + 9y2 = 45 is
10/3
5/3
5√5/3
10√5/3
The equation represents