Let f(x) = 1 + x, 0 ≤ x ≤ 2 = 3 - x, for 2 and g(x) = f[f(x)] =
g(x) = 2 + x, 0 ≤ x ≤ 1 = 2 - x, 1 < x ≤ 2 = 4 - x, 2 < x ≤ 3
g(x) = 2 - x2, 0 < x < 2 = 4 - x, 2 < x ≤ 3
g(x) = 2 + x, 0 ≤ x ≤ 2 = 4 + x, 2 < x ≤ 3
None of these
The domain of the function f(x) = log |4 - x2| is
(-2, 2)
R - {2, -2}
R
{-2, 2}
If f: R→ R, the range of the function f(x) = x2/x2+1, is
R-
R+
R x R
f(a2)
f(a)
f(a+1)
Noneof these
The inverse function of f(x) = [1 - (x - 5)3]1/5 is
5 + (1 - x5)1/3
5 - (1 - x2)1/3
-5 + (1 - x5)1/3
Cot θ
- Cot θ
-tan θ
- sin θ
Which of the following function identical?
f(x) = x/x and ∅ (x) = 1
f(x) = logx2 and ∅ (x0 = 2 log x
f(x) = 1 and ∅ (x) = sin2 x + cos2 x
f(x) = x and ∅(x) = (√x)2
Given A = { x∈ N : x≤ 4} and B = { y ∈ N: 3
then n (A×A) =
4
8
16
0
If f(x) = x2 - 1/x2, f(x) =
-f(1/x)
f(1/x)
-f(x)
f(x2)
If f1(x) and f2 (x) are defined on domain D1 and D2, then the domain of f1(x) + f2 (x) is
D1 ∪ D2
D1 ∩ D2
D1 - D2
D2 - D1