2 Cos θ
2 Sec θ
2 Sin θ
Sin2θ
Cos2θ
tan2θ
Cot2θ
Sin (90 - θ) Cos θ + Cos (90 - θ) Sinθ =
1
0
2
-1
(1 + tan2θ) Sin2θ =
(Cosec A - Sin A) (Sec A - Cos A) (tan A + Cot A) =
Sin A
Cos A
If Cosθ = Sin θ, then θ =
30
60
45
35
In the adjoining figure
45°
30°
60°
50°
13
25
9 tan2θ - 9 Sec2θ =
9
-9