(Cos2θ - 1) (Cot2θ + 1) + 1 =
1
-1
2
0
(1 + tan2θ) Sin2θ =
Sin2θ
Cos2θ
tan2θ
Cot2θ
13
25
9 tan2θ - 9 Sec2θ =
9
-9
In the adjoining figure
45°
30°
60°
50°
(Cosec A - Sin A) (Sec A - Cos A) (tan A + Cot A) =
Sin A
Cos A
Cos4x - Sin4x =
2Sin2x - 1
2Cos2x - 1
1+ 2sin2x
1 - 2Cos2x
In the adjoining figure, AC = ________
25 m
If Cosθ = Sin θ, then θ =
30
60
45
35