A L-C circuit is in a state of resonance. If C = 0.1 μF and L = 0.25 H, then neglecting the ohmic resistance of the circuit, find the frequency of oscillations.
1007 Hz
100 Hz
109 Hz
500 Hz
An AC supply gives 30 Vrms which passes through a 10 Ω resistance. The power dissipated in it is
90 √2 W
90 W
45√2 W
45 W
In an a.c. circuit, the current is i = 5 sin (100t -π/2) amp and the a.c. voltage is v = 200 sin (100 t) volts. Then power consumption is
200 W
0 W
40 W
1000 W
A hot wire ammeter reads 10 A in an a.c. circuit. The peak value of current is
10/√2 A
20/π A
5 π A
10 √2 A
The reactance of a capacitor of capacitance C is X. If both the freqauency and capacitance be doubled, then new reactance will be
X
2X
4X
X/4
In an AC circuit, Voltage and current are given by
V = 100 sin (100 t)
and I = 100 sin (100 t + π/3).
Calculate the power dissipation in the circuit ?
104 W
2.5 W
5 kW
10 W
The primary and secondary coils of a transformer have 50 and 1500 turns respectively. If the magnetic flux Φ linked with the primary coil is given by Φ = Φ0 + 4t, where Φ is in weber, t is time in second and Φ0 is a constant, the output voltage across the secondary coil is
90 V
120 V
220 V
30 V
An alternating voltage V = 200√2 sin (100t) is connected to a 1μF capacitor through an AC ammeter. The reading of the ammeter shall be
10 mA
20 mA
40 mA
80 mA
In an LCR series circuit, the capacitance is made one-fourth when in resonance. Then what should be the change in inductance so that the circuit remains in resonance?
4 times
¼ times
8 times
2 times
What is the value of inductance L for which the current is maximum in a series LCR circuit with C = 10μF and ω = 1000s-1?
100 mH
1 mH
Cannot be calculated unless R is known
10 mH