The expression tan^{2}∝+ cot^{2} ∝ is
≥ 2
≤ 2
≥ -2
= 2
If tan A = - ^{1}/_{2} and tan B = - ^{1}/_{3}, then A+B =
^{∏}/_{4}
3 ^{∏}/_{4}
^{5∏}/_{4}
None of these
The value of 1+ cos 56^{o} + cos 58^{o} - cos 66^{o} is equal to
2 cos 28^{o} cos 29^{o} cos 33^{o}
4 cos 28^{o} cos 29^{o} cos 33^{o}
4 cos 28^{o} cos 29^{o} sin 33^{o}
2 cos 28^{o} cos 29^{o} sin 33^{o}
The value of Cos^{2}θ + Sec^{2}θ is always
Less than 1
Equal to 1
Greater than 1, but less than 2
Greater than or equal to 2
Sin 2 θ
Cos 2θ
Cosec 2 θ
Sec 2 θ
The value of x for the maximum value of√3 cos x + sin x, is
30^{o}
45^{o}
60^{o}
90^{o}
The value of cot (45^{o} + θ) cot (45^{o} - θ) is:
-1
0
1
∞
The value of sin A sin (60^{o}-A) sin (60^{o} +A) is equal to
Sin 3 A
(tan 7^{o}) (tan 23^{o}) (tan 60^{o})(tan 67^{o})(tan83^{o}) is
7
√3
If cos θ = ^{1}/_{2} (x + ^{1}/_{x}), then ^{1}/_{2} (x^{2} + ^{1}/_{x}^{2}) is equal to
sin 2 θ
cos 2 θ
tan 2 θ
sec2 θ