Topics |
---|
1. Given f(x) = 2 x+5.Find the values of
a) f(3) b) f(0)
Given that f(x) = 2 x+5
(a) f(3) = 2×3+5
= 6+5=11
(b) f(0) = 2×0+5
= 0+5=5
2. Given f(x) = 3 x2 + 2 .Find the values of
a) f(4) b) f(±1)
Given that f(x) = 3 x2 +2
(a) f(4) =3 × (4)2 + 2
= 3×16 + 2 = 48 + 2 = 50
(b) f(1) = 3 × 12 + 2
= 3 + 2 = 5
f(-1) = 3 × (-1)2 + 2 = 3 × 1 + 2
= 5
f(±1) = 5
3.Given f(x) = x2 + 4 x+3 .Find the values of
a) f(2) b) f(1/2)
a) Given that f(x) = x2 + 4 x + 3
f(2) = 22 + 4 × 2 + 3
= 4 + 8 + 3 = 15
f(1/2) = (1/2)2 + 4 × 1/2 + 3
= 1/4 + 2 + 3 = 1/4 + 5
= 21/4 = 5 1/4 .
4. Given g(x) = x3 and h(x) = 4 x + 1 .Find the value of g(2) + h (2)
Given that g(x) = x3
g(2) = 23 = 8
and h(x) = 4 x + 1
h(2) = 4 × 2 + 1 = 8 + 1 = 9
g(2) + h(2) = 8 + 9 = 17
5. Given g(x) = x3 and h(x) = 4 x+1 .Find the value of 3 g (-1) -4h (-1)
Given that g(x) = x3
g(-1) = (-1) = -1
3 g(-1) = 3 × -1 = -3
and h(x) = 4 x + 1
h (-1) = 4(-1) +1 = -4 + 1 = -3
4 h(-1) = 4 × -3 = -12
Hence 3 g (-1) -4 h(-1) = -3-(-12) = -3 + 12 = 9
6. Given h(x) = 2 x+5 and g(x) = x2 .Find the value of h(g(2)
Given that g(x) = x2
g(2) = 22 = 4
h(g(2)) = h(4)
= 2 × 4 + 5
= 8 + 5 = 13 .
7. If f(x) = 2 x for 0≤x≤8. Find their ranges .
If x = 0 , f(x) = 2 × 0 = 0
If x = 8 , f(x) = 2 × 8 = 16
range = 0 ≤ f(x) ≤ 16
8. Of the following functions ,one is even and two are odd .Determine it .
a) y = x7 b) y = x4 + 3 x2 c) y = x(x2 - 1)
Let f(x) = x7
f(-a) = (-a)7 = -a7 = -f(a)
f(x) is odd
b) Let f(x) = x4 + 3 x2
f(-a) = (-a)4 + 3 (-a)2 = a4 +3 a2 = f(a)
f(x) is even
c) Let f(x) = x(x2 -1)
f(-a) = -a((-a)2-1) = -a(a2 -1)=-f(a)
Hence f(x) is odd
9. State the value of the following:
a) |-7| b) |-1/200| c) |9-4|
a) We know that |x| = -x if x < 0 |-7| = - (-7)=7
b) Since |x| = -x ,|x|= |-1/200| = -(-1/200) = 1/200 .
c) |9-4| = |5|
= 5 (Since |x| = x if x≥0)
10. Find the values of |x-x2| when x takes the values
a) 2 b) 1/2
|x-x2 | = |2-22|
= |2-4| = |-2|=2
b) |x-x2 | at x=1/2 = 11/2 - (1/2)2 |
= |1/2 - 1/4| = |2/4|=|1/2|=1/2
11. The mathematics marks ,m and n ,of two twins never differ by more than 5 . Write this statement as an inequality using the modulus sign
Difference of m and n = m - n
Since they never differ by more than 5 , we can write this as |m - n| ≤ 5 .