Topics |
---|
1. Find the real and imaginary parts of
Re(Z) = -1/5 and Im (Z) = -7/5
2. If Z1 = 2 + i, Z2 = 3 - 2i and . Find the conjugate of Z1Z2.
= (2-i) (3 + 2i)
= 6 + 4i - 3i - 2i2
= 6 + 4i - 3i + 2
= 8 + i
3. If Z1 = 2+i, Z2 = 3 - 2i and
4. Express in the standard form a+ib :
= (-3 + i) (-i) [Since 1/i = -i]
= 3i - i2
= 3i + 1
= 1 + 3i
5. Express in the standard form a+ i b :
6. Find the real values of x and y for which the equation is satisfied (1-i) x + (1 + i)y = 1 - 3i.
(1-i) x + (1 + i) y = x - ix + y + iy
= (x+y) + i (y - x )
= 1 - 3i (given).
So equating their RP and IP we get
x + y = 1 → (1)
y - x = -3 ⇒ x- y= 3 → (2)
x + y = 1 ; x - y = 3
2x = 4 ⇒ x = 2
Substituting x = 2 in (1) we get y = 1
So x = 2, y = -1
7. Find the modulus or the absolute value of
8. Find the modulus of - √2 + i √2
Let √2 + i √2 = r (cos θ + sin θ)
Equating the real and imaginary parts separately.
r cos θ = -√2 r sin θ = √2
r2 cos2 θ = 2 r2sin2θ = 2
r2 (cos2θ +sin2θ) = 4
r = √4
r = 2
9. Find the argument of -√2 +i√2
Modulus r = 2, argument
10. Find the square root of (-7 + 24i)
Squaring -7 + 24i = (x2 - y2) + 2i xy
Equating the real and imaginary parts
x2 - y2 = -7 and 2xy = 24
Solving x2 - y2 = -7 and x2 + y2 = 2 π we get x2 = 9 ⇒ x = ± 3 and y2 = 16 ⇒ y = ± 4
Since xy is positive, x and y have the same sign
∴ (x = 3, y = 4) or (x = -3, y = -4)