Topics |
---|
1. Simply 3 (1 – 2i ) + ( -4 – 5i ) + ( -8 + 3i )
Ans: 3 ( 1 – 2i ) + ( -4 - 5i ) + ( -8 + 3 I ) = 3 – 6 i – 4 - 5i – 8 + 3i
= - 9 - 8i
2, Simplify ( 2 + 3 i ) ( 4 – 5i )
Ans: ( 2 + 3i) ( 4 – 5 i ) = 8 – 10 i + 12 i - 15 i2
= 8 + 2 i + 15 = 23 + 2i
3, If ( 1 + i ) z = ( 1 – i ) , then find the value of z.
Ans: Let z = x + i y
( 1 + i ) z = ( 1 –i )
∴ ( 1 + i ) ( x+ iy ) = ( 1 - i ) ( x - iy )
⇒(x-y)+i(x+y) = (x-y) - i(x+y)
⇒ x + y = 0
∴ z = x - ix = x ( 1 - i ), ∀ x ∈ R
4, Express ( 5 i ) ( - 3/5 i ) in the form a + ib.
Ans: ( 5i) ( -3/5 i ) = -3i2 = -3 x -1 = 3.
5. Express i9 + i 19 in the form a + ib.
Ans: i9 + i 19 = ( i4 ) 2 . i + ( i 4 )4 . i3
= i + i3 = i + i2. i = i - i = 0
6, Find the multiplicative inverse of 4 - 3 i
Ans: Let z = 4 -3i
7,
Ans:
8, Evaluate :
a) i 7 b) i51 c) i 500
Ans:
a) i 7 = i4, i3 = i3 = -i
b) i 51 = i 48. i 3 = i3 = -i
c) i500 = ( i4) 125 = 1
9, Find the value of :
a) √-25 × √-81 b) 4√-4 + 5 √-9 + 3 √-16
a) √-25 × √-81 = 5i x 9i
= 45 i2 = -45.
b) 4√-4 + 5 √-9 + 3 √-16
= 4 x 2 i + 5 x 3i + 3 x 4i
= 8i + 15i + 12 i
= 35i
10,Prove that i 107 + i 112 + i117 + i 122 = 0.
LHS = i 107 + i 112 + i117 + i 122
= i3 + i0 + i1 + i2
= -1 + 1 + i - i = 0 = RHS
11.
Ans:
12, Find a complex number when multiplied by 5 + 3i gives 3 - 4 i
Ans: Let z be the requried complex number
13, Find a least postiive integer value for n
So that
Ans:
14, Find the value of θ so that is purely real.
Ans:
For a complex number to be purely real, then imaginary part = 0.
15, Find the polar form of 2 + i 2 √3.
Ans: Let 2 + i 2 √3 = 4 ( cos θ + 1 sin θ )
Equating real and imaginary parts
r cos θ = 2 → ( 1 )
r sin θ = 2 √3 → ( 2 )
Squaring and adding ( 1 ) and ( 2 )
r2 ( sin 2 θ + cos2 θ ) = 4 + 12.
⇒ r2 = 16 ⇒ r = 4.
r sin θ/ r cos θ = 2 √3/2
tan θ = √3
⇒ θ = tan -1 ( √3 )
= π/3
∴ Z = 4 ( cos π/3 +i sin π/3 )
= 4 ( 1/2 + i 3/2 ).
16, Find the polar form of 5 + 12 i
Ans: Let z = 5 + 12 i = r ( cos θ + isin θ )
Equating real and imaginary parts.
r cos θ = 5 → ( 1 )
r sin θ = 12 → ( 2 )
Squaring and adding ( 1 ) & ( 2 ).
r2 ( cos 2 θ + sin 2 θ ) = 25 + 144
⇒ r2 = 169 ⇒ r = 13.
r sin θ/ r cos θ = 12/5
⇒ tan θ ⇒ θ = tan -1 12/5.
∴ Z = 13 [ cos ( tan -1 12/5) + i sin ( tan -1 12/5)]
17, Find the conjugate and the modulus of 7 + 24 i ?
Ans : Let Z = 7 + 24 i
18, x + iy = a + ib/ a - ib prove that x2 + y2 = 1.
19,
Ans:
20,
Ans:
21,
Ans:
22. If ( 1 + i ) ( 1 + 2i ) ( 1 + 3 i ) - - - - - ( 1 + n i ) = x + iy Prove that 2 x 5 x 10 x . . . . . . ( 1 + n2 ) = x2 + y2
Ans: Given that ( 1 + i ) ( 1 + 2i ) ( 1 + 3 i ) - - - ( 1 + n i ) = x + iy
Taking modulus,
| (1 + i ) ( 1 + 2i ) ( 1 + 3 i ) - - - ( 1 + n i )| = | x + iy |
⇒ |1 + i | | 1 + 2i | | 1 + 3 i | - - - | 1 + n i | = | x + iy |
Squaring on both sides,
2 .5.10 - - - - - - ( 1 + n2 ) = x2+y2.
23, Solve x2 - 7 ix - 12 = 0
Ans: a = 1, b = - 7 i, c = -12
24, Solve √5 x2 + x + √5 = 0.
Ans: a = √5, b = 1, c = √5
25. Solve x2 + 3x + 5 = 0.
a = 1, b = 3, c = 5