Hydrogen atom emits blue light when it changes from n = 4 energy level to n = 2 level. Which colour of light would the atom emit when it changes from n = 5 level to n = 2 level?
red
yellow
violet
green
The total energy of electron in the ground state of hydrogen atom is -13.6 eV. The kinetic energy of an electron in the first excited state is
3.4 eV
6.8 eV
13.6 eV
1.7 eV
An α-particle of energy 5 MeV is scattered through 180o by a fixed uranium nucleus. The distance of the closest approach is of the order of
1 Å
10-10 cm
10-12 cm
10-15 cm
The ionization energy of hydrogen atom is 13.6 eV. Following Bohr’s theory, the energy corresponding to a transition between 3rd and 4th orbit is
3.40 eV
1.51 eV
0.85 eV
0.66 eV
Which of the following transitions in a hydrogen atom emits of the highest frequency?
n = 1 to n = 2
n = 2 to n = 6
n = 2 to n = 1
n = 6 to n = 2
The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to wavelength of emitted radiation corresponds to the transition between
n = 3 to n = 2 states
n = 3 to n = 1 states
n = 2 to n = 1 states
n = 4 to n = 3 states
In the Bohr model of the hydrogen atom, let R, V and E represent the radius of the orbit, the speed of electron and the total energy of the electron respectively.Which of the following quantity is proportional to the quantum number n?
E/V
R/E
VR
RE
In a Rutherford scattering experiment when a projectile of charge Z1and mass M1 approaches a target nucleus of charge Z2 and Mass M2, the distance of closest approach is r0. The energy of the projectile is
directly proportional to M1 × M2
directly proportional to Z1 Z2
inversely proportional to Z1
directly proportional to Mass M1
Which source is associated with a line emission spectrum?
Electric fire
Neon street sign
Red traffic light
Sun