The energy required to excite hydrogen atom from n = 1 to n = 2 state is 10.2 eV. What is the wavelength emitted when it returns to ground state?
1020 × 10-10 m
1220 × 10-10 m
1320 × 10-10 m
920 × 10-10 m
An α-particle of energy 5 MeV is scattered through 180o by a fixed uranium nucleus. The distance of the closest approach is of the order of
1 Å
10-10 cm
10-12 cm
10-15 cm
In a Rutherford scattering experiment when a projectile of charge Z1and mass M1 approaches a target nucleus of charge Z2 and Mass M2, the distance of closest approach is r0. The energy of the projectile is
directly proportional to M1 × M2
directly proportional to Z1 Z2
inversely proportional to Z1
directly proportional to Mass M1
Which source is associated with a line emission spectrum?
Electric fire
Neon street sign
Red traffic light
Sun
The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to wavelength of emitted radiation corresponds to the transition between
n = 3 to n = 2 states
n = 3 to n = 1 states
n = 2 to n = 1 states
n = 4 to n = 3 states
When a hydrogen atom is raised from the ground state to an excited state
potential energy decreases and kinetic energy increases
potential energy increases and kinetic energy decreases
Both kinetic energy and potential energy decrease
Absorption spectrum
The total energy of electron in the ground state of hydrogen atom is -13.6 eV. The kinetic energy of an electron in the first excited state is
3.4 eV
6.8 eV
13.6 eV
1.7 eV
Hydrogen atom emits blue light when it changes from n = 4 energy level to n = 2 level. Which colour of light would the atom emit when it changes from n = 5 level to n = 2 level?
red
yellow
violet
green
Which of the following transitions in a hydrogen atom emits of the highest frequency?
n = 1 to n = 2
n = 2 to n = 6
n = 2 to n = 1
n = 6 to n = 2