When a hydrogen atom is raised from the ground state to an excited state
potential energy decreases and kinetic energy increases
potential energy increases and kinetic energy decreases
Both kinetic energy and potential energy decrease
Absorption spectrum
The total energy of electron in the ground state of hydrogen atom is -13.6 eV. The kinetic energy of an electron in the first excited state is
3.4 eV
6.8 eV
13.6 eV
1.7 eV
In the Bohr model of the hydrogen atom, let R, V and E represent the radius of the orbit, the speed of electron and the total energy of the electron respectively.Which of the following quantity is proportional to the quantum number n?
E/V
R/E
VR
RE
When electron jumps from n = 4 to n = 2 orbit, we get
second line of Lyman series
second line of Balmer series
second line of Paschen series
an absorption line of Balmer series
An α-particle of energy 5 MeV is scattered through 180o by a fixed uranium nucleus. The distance of the closest approach is of the order of
1 Å
10-10 cm
10-12 cm
10-15 cm
The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to wavelength of emitted radiation corresponds to the transition between
n = 3 to n = 2 states
n = 3 to n = 1 states
n = 2 to n = 1 states
n = 4 to n = 3 states
In the Bohr’s model of a hydrogen atom, the centripetal force is furnished by the Coulomb attraction between the proton and the electron. If a0 is the radius of the ground state orbit, m is the mass and e is the charge on the electron, ε0 is the vacuum permittivity, the speed of the electron is
zero
Hydrogen atoms are excited from ground state of the principal quantum number 4. Then the number of spectral lines observed will be
3
6
5
2