( x2 + 1 ) (x - 1 ) ( x -2 ) < 0 , then
x < 1 or x > 2
x ∈ ( 1, 2 )
-1 < x
None of these
If a > b then
2a > 2b
|2a | > | 2b |
-5a > -5b
|x + 2/x | < 3, then x belongs to ________.
(-2,-1) U ( 1,2 )
(-∞, -2 ) U (-1, -1) U ( 2, ∞ )
(-2, 2 )
(-3, 3 )
If 1/a < 1/b; then
| a | > | b |
a < b
a > b
If a/b < c/d, then _________,
( a/b)2 < (c/d)2
If |x| > 5, then
0 < x < 5
x < -5 or x > 5
-5 < x < 5
x > 5
If a > b then _______.
a + 5 > b + 5
a - b < b - 5
a + b < b + b
Depends on a and b
|2x -3| < | x + 5 |, then x belongs to :
( -3, 5 )
( 5, 9 )
( -2/3, 8 )
( -8, 2/3 )
If a < b then,
a/(-2 ) < b/(-2)
a/2 > b/2
1/a < 1/b
a/-2 > b/-2
If | x | < x , then:
x is a positive real number
x is a non negative real number
There is no x satisfying this inequality
x is a negative real number