The eccentricity of the conic x2 - 2x - 4y2 = 0 is
1/4
3/2
√5/2
√5/4
The equations of the transverse and conjugate axes of a hyperbola respectively are x + 2y - 3 = 0, 2x - y + 4 = 0 and their respective length are √2 and 2/√3. The equation of the hyperbola is.
2/5 ( x + 2y - 3)2 - 3/5 (2x - y + 4)2 = 1
2/5 (2x - y + 4)2 - 3/5 (x + 2y - 3)2 = 1
2 (2x - y + 4 )2 - 3 (x + 2y - 3)2 = 1
2 (x + 2y - 3)2 - 3 (2x - y + 4)2 = 1
If e, e' are the eccentricities of hyperbolas and , then
e = e'
e = -e'
ee' = 1
1/e2 + 1/e'2 = 1
The equation of the chord of the hyperbola x2 - y2 = 9 which is bisected at (5, -3) is
5x + 3y = 9
5x - 3y = 16
5x + 3y = 16
5x - 3y = 9
If the line ax + by + c = 0 is a normal to the curve xy = 1, then
a > 0, b > 0
a > 0, b < 0 or a < 0, b > 0
a < 0, b < 0
None of these
The eccentricity of the hyperbola x2 - 4y2 = 1 is
√3/2
2/√5
2/√3
If the chords of contact of tangents from two points (x1,y1) and (x2,y2) to the hyperbola are at right angles, then is equal to
-a2/b2
-b2/a2
-b4/a4
-a4/b4
The locus of the points of intersection of perpendicular tangents to is
x2 + y2 = a2 + b2
x2 - y2 = a2 - b2
x2 + y2 = a2 - b2
x2 - y2 = a2 + b2
P is a point on the hyperbola , N is the foot of the⊥ from P on the transverse axis.The tangent to the hyperbola at P meets the transverse axis at T.If O is the centre of the hyperbola, then OT.ON is equal to
e2
a2
b2
b2/a2
Two diameters with slopes m1,m2 are conjugate if
m1m2 = -1
m1m2 = - b2/a2
m1m2 = a2/b2
m1m2 = b2/a2