P is a point on the hyperbola , N is the foot of the⊥ from P on the transverse axis.The tangent to the hyperbola at P meets the transverse axis at T.If O is the centre of the hyperbola, then OT.ON is equal to
e2
a2
b2
b2/a2
A rectangular hyperbola is one in which
the two axes are rectangular
the two axes are equal
the asymptotes are perpendicular
the two branches are perpendicular
The equation of the chord of the hyperbola x2 - y2 = 9 which is bisected at (5, -3) is
5x + 3y = 9
5x - 3y = 16
5x + 3y = 16
5x - 3y = 9
If e,e' be the eccentricities of two conics S and S' and if e2 + e'2 = 3, then both S and S' can be
Ellipses
Parabola
Hyperbolas
None of these
The diameter of 16x2 - 9y2 = 144 which is conjugate to x = 2y is
y = 16/9 x
y = 32/9 x
x = 16/9 y
x = 32/9 y
If e, e' are the eccentricities of hyperbolas and , then
e = e'
e = -e'
ee' = 1
1/e2 + 1/e'2 = 1
If e and e1 are the eccentricities of the hyperbolas xy = c2 and x2 - y2 = c2 , then e2 + e21 is equal to
1
4
6
8
The eccentricity of the hyperbola x2 - 4y2 = 1 is
√5/2
√3/2
2/√5
2/√3
The equations of the transverse and conjugate axes of a hyperbola respectively are x + 2y - 3 = 0, 2x - y + 4 = 0 and their respective length are √2 and 2/√3. The equation of the hyperbola is.
2/5 ( x + 2y - 3)2 - 3/5 (2x - y + 4)2 = 1
2/5 (2x - y + 4)2 - 3/5 (x + 2y - 3)2 = 1
2 (2x - y + 4 )2 - 3 (x + 2y - 3)2 = 1
2 (x + 2y - 3)2 - 3 (2x - y + 4)2 = 1
Two diameters with slopes m1,m2 are conjugate if
m1m2 = -1
m1m2 = - b2/a2
m1m2 = a2/b2
m1m2 = b2/a2