x2 -3 |x| + 2 < 0, then x belongs to ________.
( 1,2 )
( -2, -1 )
( -2, -1 ) U ( 1, 2 )
( -3, 5 )
( x - 1 ) > 0
( x -2 ) > 0
(x - 2 ) < 0
( x - 1 ) > 0 if ( x -2 ) > 0
(x2 + 1 ) ( x -2 ) 2 ( x -3 ) < 0, then x belongs to _______.
( -∞, 2) U (2, 3 )
( -∞, 3)
(2, 3 )
None of these
As sinx < x and x < tanx in ( 0,π/2 ), so in the same interval
Sinx < tanx
Sinx > tanx
sin2 x > tan 2 x
|sinx | > |tanx |
If a > b then _______.
a + 5 > b + 5
a - b < b - 5
a + b < b + b
Depends on a and b
( x2 + 1 ) (x - 1 ) ( x -2 ) < 0 , then
x < 1 or x > 2
x ∈ ( 1, 2 )
-1 < x
|2x -3| < | x + 5 |, then x belongs to :
( 5, 9 )
( -2/3, 8 )
( -8, 2/3 )
The set of values of x satisfying the inequalities ( x -1 ) ( x -2 ) < 0 and ( 3x - 7 ) ( 2x - 3 ) > 0 is ______.
(1, 2 )
( 2, 7/3 )
( 1, 7/3 )
( 1, 3/2 )
If | x | < x , then:
x is a positive real number
x is a non negative real number
There is no x satisfying this inequality
x is a negative real number
If 1/a < 1/b; then
| a | > | b |
a < b
a > b