In right triangle Δ ABC, ∠ B = 90o, tan C = 1/2. If AC = 6 cm, then AB =
6/√5 cm
2 cm
3/√5 cm
√5 cm
If cosec θ = √2, then cot θ =
0
1
√2 + 1
√2 - 1
1/cos θ =
sin θ
cosec θ
sec θ
tan θ
If cos θ = 3/4, then sin θ =
3/4
4/3
√7/4
√2/3
If cosec θ = √5, then cot θ - cos θ =
1/5
1/3
3/5
5/4
If 2 sin θ = √3, then cos θ =
√3/2
2/√3
1/2
2
If a sin θ = 1 and b tan θ = 1, then the relation between a and b is
a2 = b2
a2 - b2 = 1
a2 + b2 = 1
a2 + b2 = -1
sin2 50+ cos2 50 =
1.25
2.32
cot θ =
cos θ/ sinθ
1/cos θ
sin θ/cosθ
1/sec θ