The set of values of x satisfying the inequalities ( x -1 ) ( x -2 ) < 0 and ( 3x - 7 ) ( 2x - 3 ) > 0 is
(1, 2 )
( 2, 7/3 )
( 1, 7/3 )
( 1, 3/2 )
If 3 < | x | < 6, then x belongs to
( - 6, -3 ) U ( 3, 6 )
( - 6, 6 )
( -3, -3 ) U (3, 6 )
None of these
If |x| > 5, then
0 < x < 5
x < -5 or x > 5
-5 < x < 5
x > 5
If x2 > 4, then
x > 4
| x | > 2
-4 < x < 4
x2 -3 |x| + 2 < 0, then x belongs to
( 1,2 )
( -2, -1 )
( -2, -1 ) U ( 1, 2 )
( -3, 5 )
( x2 + 1 ) (x - 1 ) ( x -2 ) < 0 , then
x < 1 or x > 2
x ∈ ( 1, 2 )
-1 < x
As sinx < x and x < tanx in ( 0,π/2 ), so in the same interval
Sinx < tanx
Sinx > tanx
sin2 x > tan 2 x
|sinx | > |tanx |
If a/b < c/d, then
( a/b)2 < (c/d)2
If a > b then
a + 5 > b + 5
a - b < b - 5
a + b < b + b
Depends on a and b
If 1/a < 1/b; then
| a | > | b |
a < b
a > b